
Sagan in TAC2009: Using Support Vector Machines in Recognizing Textual
Entailment and TE Search Pilot task

Julio Javier Castillo
Faculty of Mathematic Astronomy and Physics - National University of Cordoba

Córdoba, Argentina
jotacastillo@gmail.com

Abstract
This paper describes the Sagan system in the context of
the Fifth Pascal Recognizing Textual Entailment (RTE-5)
Evaluation Challenge and the new Textual Entailment Search
Pilot Task.
The system employs a Support Vector Machine classifier
with a set of 32 features, which includes lexical and semantic
similarity for both two-way and three-way classification
tasks.
Additionally, we show an approach to deal with the problem
of search entailment in a context of a set of document that
uses co-reference analysis.

Keywords
Textual entailment, machine learning, lexical features.

1. Introduction

 The goal of the RTE Track is to develop systems that
recognize when one piece of text(T) entails another(H).
This year the National Institute of Standards and
Technology (NIST) organized the Text Analysis
Conference (TAC) 2009, which has three main tracks,
namely Knowledge Base Population (KBP), Recognizing
Textual Entailment (RTE), and Summarization, providing
a common evaluation framework of different NLP tasks.
In order to move the RTE task towards more realistic
application scenarios the texts will come from a variety of
sources and may include typographical errors and
ungrammatical sentences. This time, RTE5 will be based
on only three application settings: QA, IE, and IR.
In addition to the main task is offered a new Textual
Entailment Search pilot that is situated in the
summarization application setting, where the task has the
goal of finding all Texts in a set of documents that entail a
given Hypothesis.

In this paper we present the Sagan system as part of Famaf
participation in the textual entailment recognition main
task and textual entailment search pilot task.
The Sagan system applies a Support Vector Machine
approach to the problem of recognizing textual entailment.
This year, we modify our past Sagan system in order to
work almost exclusively with lexical features, with the
aims of exploring more deeply how lexical information
could help in the RTE task. Then, we use 31 lexical
features and only 1 semantic feature based on WordNet.
These features are used to characterize the relationship
between text and hypothesis for both training and test
cases.

 The remainder of the paper is organized as follows:
Section 2 describes the architecture of our system, whereas
Section 3 shows the experimental evaluation and
discussion of them.
Finally, Section 4 summarizes the conclusions and lines
for future work.

2. System Architecture

This section provides an overview of our system as used
for RTE5 track at the TAC 2009 Challenge. The system is
based on a machine learning approach for recognizing
textual entailment.
We use a supervised machine learning approach to train a
SVM classifier over a variety of lexical and semantic
metrics. Every output of the metrics is treat as a feature
and used in the training step taking the previous RTE’s
datasets.
In Figure 1 we present a brief overview of the Sagan
system.

mailto:jotacastillo@gmail.com

First, the <T,H> pairs are pre-processed with optional
modules, as described next.
Second, we compute 32 features which belong to two
different categories lexical and semantics metrics.
Finally, for every submitted runs we use a SVM classifier
for 2-way and 3-way classification tasks
Using a machine learning approach we tested with SVM
classifier in order to classify RTE-5 test pairs in three
classes: entailment, contradiction or unknown.

Pre-Processing

Entailment
Result

CONTRADICTIONUNKNOWNYES

RTE5 Testset

Lexical and Semantic Metrics

Extraction Features

SVM

Trainning Sets:
RTE3 Devset,

RTE4 Testset and
RTE5 Devset

SVM_QA

SVM_IE

SVM_IR

RUN 3
RUN 1
RUN 2

Filter Stemming POS tagging

Cosine BlockJaroJaccard ...

Figure 1.General architecture of our Sagan system for RTE5.

2.1 Preprocessing

The Preprocessing module has three optional submodules
as needed by the different features:
Tokenizer: The text-hypothesis pairs are tokenized with
the tokenizer of OpenNLP framework.
Stemmer: Text-hypothesis pairs are stemmed with
Porter’s stemmer1 [3].

1 http://tartarus.org/~martin/PorterStemmer/

Tagger: Text-hypothesis pairs are PoS tagged with the
tagger in the OpenNLP2 framework.

Three runs were submitted to the Textual Analysis
Conference 2009 differing only on the preprocessing stage.
For RUN1 we use 800 pairs of the RTE3 devset, 1000
pairs of the RTE4 testset, and 600 pairs of the RTE5
devset as training set. Therefore 2400 pairs are used for
train purpose.
The RUN1 is trained with the union of the following
datasets: RTE3 devset + RTE4 testset + RTE5 devset.
On the other hand, RUN2 is trained with the union of the
datasets: RTE3 devset + RTE4 testset + RTE5 devset, but
without SUM sample test pairs. Therefore here 2000 pairs
are used as training set.
Finally, RUN3 is the result of apply three Support Vector
Machines: SVM_QA, SVM_IR, and SVM_IE, trained
over RTE3-DS + RTE4-TS +RTE5-DS.
The SVM_QA is a SVM that is trained only using the
pairs of QA task over the datasets: RTE3 devset + RTE4
testset + RTE5 devset.
In the same way, SVM_IR and SVM_IE are trained only
using IR and IE pairs, respectively.
The training set for RUN3 is composed by 600 QA-pairs,
700 IE-pairs, and 700 IE-pairs. Table 1 shows the training
set composition used for every SVM.

Datasets Pairs Total Pairs
RTE3-DS_QA 200
RTE4-TS_QA 200
RTE5-DS_QA 200
Total QA pairs 600
RTE3-DS_IE 200
RTE4-TS_IE 300
RTE5-DS_IE 200
Total IE pairs 700
RTE3-DS_IR 200
RTE4-TS_IR 300
RTE5-DS_IR 200
Total IR pairs 700
Table 1.Training set composition for QA, IR and IE –
SVM’s.

The motivation of the input features was to test our system
over a wide range of lexical feature and try to determinate
whether this approach could improve our performance.

2 http://opennlp.sourceforge.net/

http://tartarus.org/~martin/PorterStemmer/
http://opennlp.sourceforge.net/

2.2 Features

We use a supervised machine learning approach to train a
classifier over a variety of lexical and semantic metrics.
Thus, we use the output of each metric as a feature, and
train a SVM classifier.
For this purpose, we use 32 features/metrics over Text (T)
and Hypothesis (H) as explained below.
The first 12 features do not require additional explanation.

(1) Percentage of Words of Hypothesis in the text.
(2) Percentage of word of text in hypothesis.
(3) Percentage of bigrams of Hypothesis in Text.
(4) Percentage of trigrams of hypothesis in the text.
(5) TF-IDF Measure.
(6) Standard levenshtein distance [5] (character based).
(7) Percentage of words of Hypothesis in the text.

(8) Percentage of words of text in Hypothesis (over stems).
(9) Percentage of bigrams of hypothesis in the Text (over
stems)
(10) Percentage of trigrams of Hypothesis in Text (over
stems).
(11) TF-IDF measure (over stems).
(12) Levenshtein distance (over stems).

(13) String similarity using Levenshtein distance using
Wordnet as defined in (Castillo Julio J., et al. 2008).

(14) Semantic similarity using WordNet (Castillo Julio J.,
et al. 2008).
(15) Longest common substring:
Given two strings, T of length n and H of length m, the
Longest Common Sub-string (LCS) method [5] will find
the longest strings which are substrings of both T and H. It
is founded by dynamic programming.

))(),(min(
)),((),(

HLengthTLength
HTMaxComSubLengthHTlcs =

In all practical cases, min(Length(T), Length(H)) would be
equal to Length(H) . Therefore, all values will be
numerical in the [0,1] interval. Before performing LCS,
texts were tokenized and stemmed.

(16) Block distance.
(17) Chapman length deviation.
(18) Chapman mean length.
(19) Cosine similarity.
(20) Dice similarity.
(21) Euclidean distance.
(22) Jaccard similarity.
(23) Jaro.
(24) Jaro Winkler.
(25) Matching coefficient.
(26) Monge Elkan distance [11]:
(27) Needleman Wunch distance.
(28) Overlap Coefficient.
(29) QGrams distance.
(30) Smith-Waterman distance.
(31) Smith-Waterman with gotoh.
(32) Smith-Waterman with gotoh windowed affine.

The features 1 to 5, 7 and 16 to 32 were treated as bags of
words, on the other hand, features 8 to 12 were treated as
bags of stems.
The features 16 to 32 were calculated using SimMetrics3

Library over string T and H, and following the traditional
definition for every one of them.

2.3 Textual Entailment Search Pilot Task

In order to move towards more realistic scenarios and start
to test RTE systems against real data, textual entailment
search is proposed.
Thus, Textual Entailment Search Pilot task has the goal of
analyzing the potential impact of textual entailment
recognition on a real NLP application task.
The Textual Entailment Search task consists in finding all
the sentences in a set of documents that entail a given
Hypothesis.
The systems must find all the entailing sentences (Ts) in a
corpus of 10 newswire documents about a common topic.
So, the main difference with respect to the main task is
that in the Entailment Search task both Text and
Hypothesis are to be interpreted in the context of the
corpus.

3 http://sourceforge.net/projects/simmetrics/

http://sourceforge.net/projects/simmetrics/

In this proposal, we propose a textual entailment search
task based on coreference analysis. The assumption is that
using coference analysis we will be able to recognize true
and false entailment in the context of the corpus in which
T and H belongs. As coreference tool we use OpenNlp
toolkit.

The system Sagan has an extension to deal with Textual
Entailment Search problem. It is a new module that
performs the following algorithm:

1) Append a Hypothesis hi to the document Dj.
2) Computes a coreference analysis over all

document Dj.
3) Identify all coreferences that refer to the same

entity.
4) Take the longest reference and replace all

occurrences in the document.
5) Repeat for every Topic, Document and Text.

Example: The following example is extracted from the
RTE Search Pilot Devset.

[French President Jacques Chirac, 16]
 [Chirac, 16]
Where the first string represents the noun phrase that is
being referenced and second number is a reference id.

Thus, the algorithm selects “French President Jacques
Chirac” and replaces all references with the same id, using
this noun phrase.
Sometimes, the result won’t be a correct syntactically
sentence. However, it will be human understandable. We
expect that the overall sense of the sentence won’t be
changed.

Once, this process is performed every <T,H> pair of a
document is taken and feed into the Sagan system such as
explained before, following the RUN1 preprocessing
procedure but with outputs True/False.

3. Experimental Evaluation and
Discussion of Results

3.1 Results: RTE5 main task
Our official results for RTE5 testset for two-way and three-
way classification task are summarized in Table 1.

Three runs were submitted to Textual Analysis
Conference 2009 for evaluation and are shown on the
table 1. Also, the high score and low score of the RTE5
participants and ablation test are shown below.

Acc 2 way Acc 3 way
Best System

Score
0.7350 0.6833

Median Score
2-way

0.6117 ---

Sagan1_abl-1 0.5517 0.53
RUN1 0.5517 0.5217
RUN2 0.545 0.52

Median Score
3-way

--- 0.52

RUN3 0.5483 0.5183
Low Score 0.50 0.4383

Table 1.Results obtained with two-way and three-way
classification task for RTE5 testset.

We note that training set for RUN1 consist of 2400 pairs,
for RUN2 consist of 2000 pairs, and for RUN3 consist of
600 QA-pairs, 700 IR-pairs and 700 IE-pairs.
It suggest that RUN1 reach our best performance because
of RUN1 has more samples <T,H> as training set, despite
of the fact that includes SUM samples pairs.
However, RUN2 and RUN3 do not have a significant
different with respect to RUN1.

For both, two-way and three-way task a slight and not
statistical significant difference of 0.34% and 0.67%
between the best and worst RUN is found, respectively.
The performance in all runs was clearly above those low
scores; however our results are far of the best system score.

The RUN1 is trained using full RTE3 devset + RTE4
testset + RTE5 devset.
The best performance of our system was achieved with
RUN1, and it was 55.17% and 52.17% of accuracy, for two
and three way, respectively.
The accuracy of this run for two-way task is placed 5%
below of median score. On the other hand, is placed 2.17%
over the median score for three way task.
Thus, we conclude that this lexical approach is very
preliminary and need to be improved of several ways.

An ablation test is a procedure that consists of
“disconnect” one module (using a knowledge resource) of
the system, in order to asses the contribution of that
module to the overall accuracy of the system.
This year, ablation tests are mandatory for systems
participating in the main task of RTE-5, with the aims of
collecting data to better understand the impact of the

knowledge resources used by RTE systems and evaluate
the contribution of each resource to systems' performance.
We perform an ablation test of "Wordnet" resource. It is
implemented removing two features from the feature
vector and working with 30 features. Wordnet resource has
been ablated from RUN1.
First, features 13 and 14 were removed of the feature
vector, and then rerunning the system on the test set. The
results obtained are named as “Sagan1_abl-1” and shows
in table1.
Interestingly, the ablation of these two features do not
produces modification on two-way classification task and
produces a very slight and not statistical significant
increase on three-way task of 0.83%.
In addition, removing the feature 14 (the only one that
deals with semantic similarity) does not impact on the
overall classification.

In comparison with our last participation, we conclude that
this semantic feature “lose relative-importance” having
into account that positive impact of previous version of the
Sagan system.

Table 2 shows the results obtained on RTE two-way and
three-way classification task for every RUN and subtask.
Always the IR subtask yields the best results, maybe
because this dataset is the easier subtask to predict.

Finally, we note that interestingly using four SVM one for
each task we obtain similar results but using only 700
<T,H> pairs.

Accuracy
RUN 1
3 ways

RUN 1
2 ways

RUN 2
3 ways

RUN 2
2 ways

RUN 3
3 ways

RUN 3
2 ways

IR 0.655 0.695 0.635 0.665 0.63 0.645
IE 0.41 0.44 0.41 0.435 0.45 0.475
QA 0.5 0.52 0.515 0.535 0.475 0.525

Table 2. Results of Sagan system divided by task and run.

3.2 Results: TE Search pilot task

Our official results for TE Search Pilot task are
summarized in Table 1.
Together our submission, the high score and low score of
RTE5 participants shown below.

F-
measur

e

Precision Recall

High Score 0.4559 --- ---
Median
Score

0.3012 --- ---

RUN1 0.1816 0.1016 0.855
Low Score 0.0955 --- ---
Table 3. Result submission of Sagan system for Textual

Entailment Search Pilot Task.

Eight teams submitted a total of 20 runs to this task. Our
RUN is clearly above the system with low score, but is
below average.

Despite of the fact that our very simple approach we think
that a lot of improvements could be done in order to
improve the F-score of the Sagan system, refining the
before algorithm.

4. Conclusion and Future Work

In this paper we use a set of lexical features and try to
determine how lexical information helps in the textual
entailment semantic task.
We show the Sagan RTE system that performs two-way
and three-way textual entailment. The best results are
reached on the three-way task
We present our submission for the Recognizing Textual
Entailment main track, and also we describes our
participation in the textual entailment search pilot task

As conclusion, we need more balanced feature set using
not only lexical features, but also syntactic and semantic
features, in order to improve the accuracy of the system.
Additionally, we need to compute correlations between all
features in order to avoid “redundant information” at the
moment of characterizing the RTE task.
On the other hand, our approach to Textual Entailment
Search is very simple and preliminary and need to be
improved using knowledge resources and more in depth
coreference analysis.

Future work is oriented to experiment with additional
lexical, syntactic and semantic similarities features and
test the improvements they may yield.

5. References

[1] Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, Bill
Dolan. The Third PASCAL Recognizing Textual Entailment
Challenge. in Proceedings of the Workshop on Textual
Entailment and Paraphrasing, pages 1–9, Prague, June 2007

[2] Julio Javier Castillo, and Laura Alonso i Alemany. An
approach using Named Entities for Recognizing Textual
Entailment. TAC 2008, Gaithersburg, Maryland, USA,
November 2008.

[3] M. Lesk. Automatic sense disambiguation using machine
readable dictionaries: How to tell a pine cone from a ice
cream cone. In SIGDOC ’86, 1986.

[4] Gusfield, Dan. Algorithms on Strings, Trees and Sequences:
Computer Science and Computational Biology. CUP, 1999.

[5] V. Levenshtein. Binary Codes Capable of Correcting
Deletions, Insertions and Reversals. Soviet Physics
Doklady, 10:707, 1966.

[6] D. Inkpen, D. Kipp and V. Nastase. Machine Learning
Experiments for Textual Entailment. Proceedings of the
second RTE Challenge, Venice-Italy, 2006.

[7] Bill Dolan, Chris Quirk, and Chris Brockett. 2004.
Unsupervised construction of large paraphrase corpora:
exploiting massively parallel news sources. In COLING ’04:
Proceedings of the 20th international conference on
Computational Linguistics, page 350, Morristown, NJ,
USA. Association for Computational Linguistics.

[8] F. Zanzotto, Marco Pennacchiotti and Alessandro Moschitti.
Shallow Semantics in Fast Textual Entailment Rule
Learners. In Proceedings of the Third Recognizing Textual
Entailment Challenge, Prague, 2007.

[9] Marie-Catherine de Marneffe, et al. Manning.Learning to
distinguish valid textual entailments. In Proceedings of the
Third Recognizing Textual Entailment Challenge, Italy,
2006.

[10] Castillo, Julio. A Study of Machine Learning Algorithms for
Recognizing Textual Entailment.RANLP2009, Borovets,
Bulgaria, 2009.

[11] Eugene Agichtein et at. Combining Lexical, Syntactic, and
Semantic Evidence for Textual Entailment Classification.
TAC 2008, Gaithersburg, Maryland, USA, November 2008.

